
Page 1

JAMES BATES 8BIT COMPUTER SIMULATION
Document Version V1_00 13-Sept-2023 Author 6V6GT

1 INTRODUCTION
This is a software simulation of the 8bit computer created by James Bates [Ref 1] for which he used

basic logic integrated circuits and discrete components with an impressive build covering multiple

component boards. The design of this computer is described in later chapters but basically it has a

Harvard architecture with two banks of 256 bytes of memory, 4 general purpose

Figure 1-1 Original James Bates 8bit
computer

Figure 1-2 ESP32 based C++ simulation

registers, a stack and a shared 8bit bus and is capable of running small programs.

The components of each module, that is the clock, controller, ALU etc. (full list in Ch 3) are grouped

together on dedicated breadboard sets. The simulation, which is the subject of this document, is a

near 1 to 1 model of the original with each of the modules and shared bus being represented by its

own C++ object hosted on an ESP32 microcontroller and built using the Arduino development

system.

The simulation provides a similar learning experience to the original in that the user can load small

programs and trace their execution watching how each assembly level instruction is executed as a

number of discrete micro instructions, transferring instructions and data between registers and the

bus and thus help to develop an understanding of the basic architecture of simple computers. Of

course the simulation lacks the striking visual appearance of the original but otherwise, at the

software level, offers something functionally equivalent without the need to build a comprehensive

hardware device.

No changes have been made to the architecture, the instruction set or the microcode so programs

which were developed for the original 8bit computer should run on this simulation without

modification and all documentation should still be relevant. The simulation has been designed in

such a way that it could be the basis of a hybrid computer; that is a part physical build in the style of

the original with the remaining parts being simulated.

Page 2

2 CONTENTS
1 Introduction ... 1

2 Contents .. 2

2.1 Abbreviations / Glossary .. 3

3 JB 8bit Computer ... 4

3.1 Historical Development .. 4

3.2 Architecture ... 4

3.2.1 Bus .. 4

3.2.2 Clock .. 4

3.2.3 RAM.. 5

3.2.4 Controller .. 5

3.2.5 Program Counter .. 5

3.2.6 Stack Pointer .. 5

3.2.7 ALU – Arithmetic and Logic Unit ... 5

3.2.8 Registers A, B, C and D ... 6

3.2.9 Console ... 6

4 Simulation .. 7

4.1 Build .. 8

4.2 User Interface Features ... 8

4.3 Basic Usage Instructions ... 9

4.3.1 Sample Session .. 11

4.4 Sample Program Entry and Tracing ... 12

4.5 More Advanced Programming ... 15

4.6 Trouble Shooting ... 15

4.7 Next Stage ... 16

5 Appendix ... 16

5.1 Other JB 8bit Computer inspired developments .. 16

5.2 References .. 17

5.3 Software Source Packet ... 17

5.4 Controller Signal List .. 18

5.5 Instruction List ... 19

5.6 Sample Program Powers .. 24

Page 3

2.1 ABBREVIATIONS / GLOSSARY

1 to 1 A close representation of the original

ALU Arithmetic and Logic Unit

Breadboard A multi-connection component board for developing small circuits

EEPROM a non-volatile storage IC

ESP32 A 32 bit microcontroller with 4MB flash and 512KB RAM (model dependent)

Host A computer providing resources for a simulation or virtual computer

IC Integrated Circuit

IDE Interactive Development Environment

JB James Bates, the author of the original architecture

LED Light Emitting Diode

MCU Microcontroller Unit

Microcode The individual instructions which implement the instruction set

Opcode The code which represents a single assembly level instruction

PCB Printed Circuit Board

RAM Random access memory (volatile)

SMD Surface Mount Device

Page 4

3 JB 8BIT COMPUTER

This is a teaching machine but has a powerful enough specification to run some quite complex

demonstration programs including some hand compiled from C programs. It is supported by full

documentation [Ref 2] and some support tools. There is an assembler for generating machine code

and a tool for generating and loading the microcode onto EEPROMs. There are also a number of

programs written in assembly language to try out. Each module of the James Bates computer is

described in his online Video series and a schematic diagram included in his Github repository [Ref

2]. The specification of the machine together with the quality of the documentation, explanatory

videos, and the complete support tools set was the main reason for selecting the JB 8bit computer

for the basis of this simulation project.

3.1 HISTORICAL DEVELOPMENT

James Bates based his 8bit computer is based on the work of Ben Eater [Ref 3] who produced a

simpler specification computer but again backed up with a comprehensive video series describing

the project and he even sells kits for people who may wish to duplicate his design. Ben Eater in turn

based his design on the work of Albert Paul Malvino who described a series of basic computer

architectures is his book Digital Computer Electronics [Ref 4] including one he named “SAP-1” for

Simple as Possible but also including a design which is upwards compatible with the Intel 8085

microprocessor.

3.2 ARCHITECTURE

This computer has a Harvard architecture with two banks of 256 bytes RAM one bank for

instructions and the other for data, 4 general purpose registers, a stack and a shared 8bit bus for

instructions and data.

The following is a brief description of each module and further details can be found in [Ref 2]. Refer

to the diagram below to see the relationship between the modules.

3.2.1 BUS
This is an 8bit shared data and program bus. Only one module may write to the bus at any one time

and this is ensured by the controller and generally only one module will read the bus contents at

any one time.

3.2.2 CLOCK

Page 5

The clock synchronizes the transfer of data between components. Most activities/transfers take

place on the rising clock edge. There are exceptions such at the clearing of the micro timer in the

controller which happens on the falling clock edge. This has an adjustable speed to make it easy to

observe the execution of code.

3.2.3 RAM
The memory is divided into two 256 byte banks one of which is for the program and the other for

the data which is similar to the Harvard architecture which is often used for microprocessors where

these run programs from read only memory. To access the RAM, an address is put into the memory

address register which is connected directly to the RAM. A controller signal (PGM) is asserted if the

program bank is to be addressed. The program RAM can be loaded from the console through

switches.

3.2.4 CONTROLLER
This drives all the modules. It fetches the next instruction to executed from RAM. This is pointed at

by the program counter and loaded into the instruction register. It executes the instruction by first

examining its opcode (and maybe ALU flags) then fetching the microcode from the EEPROMs and

incrementing the micro timer. All instructions are implemented by multiple sets of microcode and

the next set to be executed is pointed at by the micro timer. The micro code here is simply a set of

controller signals. At the end of the execution of an instruction the micro timer is reset to zero.

3.2.5 PROGRAM COUNTER
This is simply a register used to hold the address of the next instruction to be executed. It has an

single increment function.

3.2.6 STACK POINTER
This is a register which points at the top of the stack. The stack grows downwards from the top of

the data memory bank.

3.2.7 ALU – ARITHMETIC AND LOGIC UNIT
This is based on the functionality of the SN74LS382 ALU chip. In principle it is a full 4bit adder (two

chips are used) and performs also subtraction and some logical operations. It can take optionally its

second operand from the B register or use a zero instead. The SN74LS382 is obsolete but some

stocks exist for those wishing to build this unit [Ref 5]

Page 6

3.2.8 REGISTERS A, B, C AND D
These are general purpose 8 bit registers. Register A is displayed in decimal on the console. Register

B is directly connected to the ALU.

3.2.9 CONSOLE
This can be viewed as the user interface to the computer. This allows the entry of programs,

stepping through them using the clock control and displaying intermediate values and registers,

signals etc.

Page 7

Figure 3-1 Architecture JB 8bit computer

4 SIMULATION
The simulation uses a C++ class model to represent each module in the physical 8bit computer

design. Within a module the basic functionality is preserved but no attempt has been made to have a

direct representation of the individual module sub-components say at the chip level. The purpose of

this project is to create a training/educational experience without the necessity to immediately

assemble a large hardware project. For those who wish to experience the authentic effect of blinking

Page 8

lights to show the status of registers, signals etc., which is one of the impressive visual features of

the original hardware design, an optional model has been added to support this. However,

important is also that there are multiple trace levels available so the flow through a running

program can be monitored, for example, at the assembly instruction level or the microcode level

with explanatory text status messages being written to the serial console. The target hardware on

which the simulator runs, an ESP32, can itself be simulated using an online simulator so it is not

even necessary to possess any hardware to play with it.

4.1 BUILD

The hardware for the simulation is extremely simple. It consists of an ESP32 device and optionally

four 8x8 LED MAX7219 matrixes (see schematic in Ch. 1). Because of the simplicity the physical

hardware hosting the simulation is easily simulated using an online simulator and one has already

been prepared [Ref 6]. The C++ code for the simulation has been prepared for the Arduino

development system. The actual development was done using Sloeber 4.4.1 which is more suitable

for large projects but the results are completely compatible with the Arduino IDE.

 There is a close match between the architecture of the original computer and the simulation

described here. In principle, most modules have a dedicated class with object names corresponding

to that of the original modules. The registers objects, most of which are identical are, however,

derived from a single class. The distribution of the microcode between the four 8KB EEPROMS of

the original computer has been kept and modeled as four arrays in the simulation. The emphasis of

the design has been to provide a simple translation from the physical to the simulated object and

not necessarily to produce a showcase C++ solution. The ESP32 has been chosen because of its large

RAM/Flash store. In this application its wireless features, however, are not used. A Uno class MCU

would not even be able to hold the simulated EEPROMS.

There are, however, also a number of differences to the original hardware model. For example, the

clock is explicitly 4 phase to model the hardware clock which has high and low states, but also

transient states rising edge and falling edge which are critical for the transfer of data between

modules via the bus. Further, the console of the original computer is rudimentary for example

loading a program is via a set of switches to set the address and the data/operations. In the

simulation, the console is managed over the Arduino serial console using text command and output

providing a significantly more convenient user interface.

4.2 USER INTERFACE FEATURES

The user interface features available in the original computer are duplicated and supplemented. The

optional led display gives an immediate snapshot of the state of all registers, signals, ALU flags and

the bus including a decimal digits indication of the contents of the display register (Reg_A).

Admittedly, it does not have the same appealing visual effect as the original but is nevertheless

clear and serviceable. The clock has a single step through mode and a currently 3 predefined

automatic modes to step through the running program at different speeds. Multiple trace levels are

Page 9

available. Suppressing tracing can be useful when, for example viewing the contents of one of the

memory banks without the console scrolling. Just showing the value of Reg_A (display register) is

the minimum to show the system is working, that is in the absence of the optional LED matrix

displays. Tracing the running program at the assembler instruction level is probably the easiest for

debugging. There are two more levels, one for showing all the microcode or micro instructions

generated by each assembly level instruction and a similar one which omits the instruction fetch

cycle with is always identical for each instruction. All console commands are listed in the chapter

“Usage Instructions”.

4.3 BASIC USAGE INSTRUCTIONS

The location of the software source packet is in the appendix. Instructions for modifying the code,

mainly selecting the display options or default startup behaviour are in the code itself (.ino file).

Basic instructions, in case necessary, for installing the Arduino IDE, compiling a program and

loading such a program onto the target ESP32 can be found in [Ref 7] and [Ref 8]. The serial console

must be configured for (a) 115200 baud and (b) with a CRLF termination sequence (not always

standard!).

The simulation is configured by default to initiate a program and step through it automatically but

with tracing suppressed. This start up behaviour can be changed in the Console class.

The console commands available are listed below. These are case sensitive.

Table 4-1 Clock Commands

Command Description
clocks clock slow. Note that the effective clock speed is dependent on the trace

level
clockm clock medium
clockf clock fast
cmm clock mode manual. Hit enter to advance to next clock phase.
cma clock mode automatic. The clock advances based on the chosen speed
<enter> valid only in manual mode to advance the clock

Table 4-2 Trace Level Commands

Command Description
tl0 trace level 0. No trace output. Useful to prevent the output generated by

other console commands scrolling away
tl1 trace level 1. Only the contents of the display register (Reg_A) are

displayed
tl2 trace level 2. Shows the status at the assembly code level
tl3 trace level 3. Shows each microcode instruction but omits the instruction

fetch sequence because this is identical for every instruction.
tl4 trace level 4. Everything. This is recommended for manual clock mode

Page 10

Table 4-3 Programming Commands

Command Description
progs Enter programming mode.
progt Terminate programming mode.
<dec> <dec> Two space separated numbers in programming mode indicate the address

and the instruction or data to be entered at that address
progv View the contents of the program memory. All 256 bytes are displayed

Table 4-4 Preload sample program

Command Description
progFib Fibonacci series program 1, 2, 3, 5, 8, 13 etc.
progPower Power series, 2^1, 2^2, 2^3 . . 2^7, 3^1, 3^2 . . 3^5, 4^1 . . where the result

is less than 256
progPower Runs the above two programs plus a simple multiplication table in

sequence

Table 4-5 Miscellaneous Commands

Command Description
datav View entire data memory. All 256 bytes.
rst Reset. Restarts the running program
? Displays a list of all commands. It is usually best to issue the command tl0

beforehand to suppress any program tracing.

Page 11

4.3.1 SAMPLE SESSION

This is the simulation itself running in a simulator (Wokwi) [Ref 6]

Or with a real (non-emulated) ESP32

Page 12

4.4 SAMPLE PROGRAM ENTRY AND TRACING

Here is a trivial program which simply loops incrementing a counter from 0 to 255. For simplicity, it

is done in the display register Reg_A. We simply set the contents of Reg_A to zero, increment the

contents and loop. It is hand assembled as follows using the instruction list in the appendix. The

blue shaded items Address and Opcode are entered in decimal into the program RAM.

Address Data/Opcode Instruction Description
0 Ox07 (dec 7) DATA Ra, #IMM Put the following data item in Reg_A

1 0 - zero

2 0xC0 (dec 192) Inc Ra Increment the contents of Reg_A

3 0x2F (dec 47) JMP #imm Jump to the address following

4 2 - Address 2

Page 13

To load the program into program RAM enter the following in the serial console:

entry description
tl0 Trace level 0 to suppress tracing

cmm Stop the clock by forcing it into manual mode

progs Start programming mode

0 7 Address Data/Opcode pair

1 0 Address Data/Opcode pair

2 192 Address Data/Opcode pair

3 47 Address Data/Opcode pair

4 2 Address Data/Opcode pair

progt Terminate programming mode

rst reset

tl1 Trace level 1 (just show changes to Reg_A display register)

clocks Slow clock speed

cma Automatic clock advance

This gives the following output on the serial console. After the clock mode is set to cma (automatic)

the program runs through its counting sequence.

Console: setting trace level to 0

Console: clock mode set to manual

Console: starting programming mode

Console: added address= 0 ; opcode = 7 (0x07) to program RAM

Console: added address= 1 ; opcode = 0 (0x00) to program RAM

Console: added address= 2 ; opcode = 192 (0xC0) to program RAM

Console: added address= 3 ; opcode = 47 (0x2F) to program RAM

Console: added address= 4 ; opcode = 2 (0x02) to program RAM

Console: terminating programming mode

Console: resetting CPU

Console: setting trace level to 1

Console: clock speed slow

Console: clock mode set to automatic

Register : reg_A 0 (0x00) read from bus

Register : reg_A 1 (0x01) read from bus

Register : reg_A 2 (0x02) read from bus

Register : reg_A 3 (0x03) read from bus

. . .

Increasing the trace level to tl2 gives this sample output. It is not a complete program cycle and is

intended for illustration only.

ProgramCounter : 0 (0x00)

ProgramCounter : Writing to bus 0 (0x00)

Register : reg_MA 0 (0x00) read from bus

Ram : prog[0] (0x07) written to bus

ProgramCounter : 0 (0x00)

Register : reg_IR 7 (0x07) read from bus

ProgramCounter : Incremented to 1 (0x01)

Controller: opcode= [DATA Ra, #IMM]

ProgramCounter : 1 (0x01)

ProgramCounter : Writing to bus 1 (0x01)

Register : reg_MA 1 (0x01) read from bus

ProgramCounter : Incremented to 2 (0x02)

Controller: opcode= [DATA Ra, #IMM]

Page 14

Ram : prog[1] (0x00) written to bus

ProgramCounter : 2 (0x02)

Register : reg_A 0 (0x00) read from bus

ProgramCounter : 2 (0x02)

ProgramCounter : Writing to bus 2 (0x02)

Register : reg_MA 2 (0x02) read from bus

Ram : prog[2] (0xC0) written to bus

ProgramCounter : 2 (0x02)

Register : reg_IR 192 (0xC0) read from bus

ProgramCounter : Incremented to 3 (0x03)

Controller: opcode= [INC Ra]

ProgramCounter : 3 (0x03)

Register : reg_A 0 (0x00) written to bus

Alu : value written to registerAL=1 ; C=0 ; O=0 ; Z=0 ; N=0

Controller: opcode= [INC Ra]

ProgramCounter : 3 (0x03)

Register : reg_AL 1 (0x01) written to bus

Register : reg_A 1 (0x01) read from bus

ProgramCounter : 3 (0x03)

ProgramCounter : Writing to bus 3 (0x03)

Register : reg_MA 3 (0x03) read from bus

Ram : prog[3] (0x2F) written to bus

ProgramCounter : 3 (0x03)

Register : reg_IR 47 (0x2F) read from bus

ProgramCounter : Incremented to 4 (0x04)

Controller: opcode= [JMP #imm]

ProgramCounter : 4 (0x04)

ProgramCounter : Writing to bus 4 (0x04)

Register : reg_MA 4 (0x04) read from bus

ProgramCounter : Incremented to 5 (0x05)

. . .

And increasing the tracing level further to tl4 gives the following sample output where the micro

instruction level can also be seen. Again, this is only a fragment of a complete program cycle:

Console: setting trace level to 4

Console: clock mode set to automatic

CpuClock: falling edge

Controller: microtimer incremented to 2

ProgramCounter : Incremented to 4 (0x04)

CpuClock: low

CpuClock: rising edge

Controller: eeprom address = 0x022F

Controller: 0x839FF7F0 0000'0000'0010'0000'0000'1000'1000'0000' 0x2F 2 0 0 [JMP #imm]

Controller: asserted signals- PCC, _PCE, _MAW,

ProgramCounter : 4 (0x04)

ProgramCounter : Writing to bus 4 (0x04)

CpuClock: high

Register : reg_MA 4 (0x04) read from bus

CpuClock: falling edge

Controller: microtimer incremented to 3

ProgramCounter : Incremented to 5 (0x05)

CpuClock: low

Page 15

CpuClock: rising edge

Controller: eeprom address = 0x032F

Controller: 0x01FFFB70 1000'0010'0100'0000'0000'0100'0000'0000' 0x2F 3 0 0 [JMP #imm]

Controller: asserted signals- _PCW, PGM, _ME, _TR,

Ram : prog[4] (0x02) written to bus

ProgramCounter : 5 (0x05)

CpuClock: high

ProgramCounter : Fetching from bus 2 (0x02)

CpuClock: falling edge

Controller: microtimer set to 0

CpuClock: low

CpuClock: rising edge

. . .

The contents of the program memory can be shown with the progv console command as follows:

Console: dumping program RAM . . .

 0 : 0x07 0x00 0xC0 0x2F 0x02 0x00 0x00 0x00 0x00 0x00

 1 : 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

 . . .

4.5 MORE ADVANCED PROGRAMMING

To progress beyond simply using the ready prepared programs or hand assembling simple

programs, there is the possibility of building an assembler from the software kit and creating new

assembly level programs or experimenting with the available examples. This is described in [Ref 2]

together with a link to a dedicated video.

As an example, for this project, the assembler was built using a virtual Linux instance (ubuntu-

20.04.3-desktop) running under VMware Workstation 17 player on a Windows 10 host computer.

Some familiarity with Linux would be useful for this stage.

A sample assembly program “Powers” appears in the appendix.

4.6 TROUBLE SHOOTING
- Compile with the exact tool chain versions used for creating this system (see source code)

- Attempt to duplicate the problem in an online simulator for example Wokwi and see [Ref 6]

for a ready made configuration.

Page 16

- If the optional led matrices are not functioning, check the configuration options within the

code and adapt if necessary. Only two display types, both variants of MAX7219 based

matrix displays, are directly supported.

- If Data entered at the serial console appears not to be accepted ensure that the configuration

of the serial console according to the usage instructions.

4.7 NEXT STAGE
- Possible use of the simulation as a test bed to replace the original but obsolete SN74LS382

ALU chip for a more easily obtainable 74HCT181

- Design interface and mods to integrate hardware modules, possibly starting with the ALU

module together with the ALU register and Register B

5 APPENDIX

5.1 OTHER JB 8BIT COMPUTER INSPIRED DEVELOPMENTS

This is a short list with comments of some of the similar projects derived at least in part from the

James Bates 8bit computer found by a quick search and assessment

 Build only but with explanations https://projects.descan.com/stuff/Project_8_bit_compi.pdf

 Very well documented. Enhancements such as 16bit address bus plus videos

https://github.com/DerULF1/8bit-computer

 An interesting PCB version but with some modules replaced with MCUs.

https://www.reddit.com/r/beneater/comments/ctcptl/a_ben_eater_james_bates_inspired_

design/?rdt=58668

 Another variant build with prototype boards on a back plane and a nice console. Including

schematics together with a simulation and FPGA implementation and videos.

https://www.dijkens.com/mdComputer8/

 PCB version with interesting ALU design but unfinished.

https://www.dvatp.com/tech/eight_bit_cpu

 An excellent project including tools, a web frontend and emulator with the emphasis on

visual fidelity with the breadboard build https://forums.overclockers.com.au/threads/web-

based-emulator-of-my-ben-eater-inspired-8-bit-computer.1271445/

https://github.com/visrealm/vrcpu

https://projects.descan.com/stuff/Project_8_bit_compi.pdf
https://github.com/DerULF1/8bit-computer
https://www.reddit.com/r/beneater/comments/ctcptl/a_ben_eater_james_bates_inspired_design/?rdt=58668
https://www.reddit.com/r/beneater/comments/ctcptl/a_ben_eater_james_bates_inspired_design/?rdt=58668
https://www.dijkens.com/mdComputer8/
https://www.dvatp.com/tech/eight_bit_cpu
https://forums.overclockers.com.au/threads/web-based-emulator-of-my-ben-eater-inspired-8-bit-computer.1271445/
https://forums.overclockers.com.au/threads/web-based-emulator-of-my-ben-eater-inspired-8-bit-computer.1271445/
https://github.com/visrealm/vrcpu

Page 17

Maybe there are many more which are not so easily searchable.

5.2 REFERENCES

[Ref 1] James Bates Youtube video series describing his 8bit computer

https://youtu.be/RNVJYGRNvwU

[Ref 2] James Bates Github repository which includes documentation, schematics etc. for his 8bit

computer https://github.com/jamesbates/jcpu

[Ref 3] Ben Eater 8bit Computer Ben Eater https://eater.net/8bit/

[Ref 4] Digital Computer Electronics by Albert Paul Malvino ISBN 978-0074622353 (also available

as a PDF download from various sources)

[Ref 5] Possible supplier of the rare SN74LS382 ALU chip used in the hardware design: Grieder

Elektronik Bauteile AG, Switzerland.

https://shop.griederbauteile.ch/product_info.php?cPath=25_27_119&products_id=6610

[Ref 6] Wokwi online simulation of the ESP32 simulator described in this document.

https://wokwi.com/projects/374430064307724289

[Ref 7] ESP32 tutorial: https://lastminuteengineers.com/getting-started-with-esp32/

[Ref 8] ESP32 tutorial: https://randomnerdtutorials.com/getting-started-with-esp32/

5.3 SOFTWARE SOURCE PACKET

Arduino Forum Exhibition Gallery (under author 6v6gt)

https://forum.arduino.cc/t/emulator-of-a-8-bit-breadboard-logic-chip-teaching-

computer/1168240

https://youtu.be/RNVJYGRNvwU
https://github.com/jamesbates/jcpu
https://eater.net/8bit/
https://shop.griederbauteile.ch/product_info.php?cPath=25_27_119&products_id=6610
https://wokwi.com/projects/374430064307724289
https://lastminuteengineers.com/getting-started-with-esp32/
https://randomnerdtutorials.com/getting-started-with-esp32/
https://forum.arduino.cc/t/emulator-of-a-8-bit-breadboard-logic-chip-teaching-computer/1168240
https://forum.arduino.cc/t/emulator-of-a-8-bit-breadboard-logic-chip-teaching-computer/1168240

Page 18

5.4 CONTROLLER SIGNAL LIST

Bit

Name Description

0

ALC ALU 74LS382 Carry in

1

ALS0 ALU 74LS382 Function Input S0

2

ALS1 ALU 74LS382 Function Input S1

3

ALS2 ALU 74LS382 Function Input S2

4

_ALB ALU 74LS382 B operand source = Reg_B when asserted or zero otherwise

5

_ALW Bus-> Reg_ALU (Write Bus to Reg_ALU)

6

_ALE Reg_ALU -> Bus (Enable Reg_ALU to Write to Bus)

7

PCC Increment Program Counter

8

_SPW Bus -> Reg_SP (stack pointer)

9

_SPE Reg_SP -> Bus (stack pointer)

10

_PCW Bus -> Reg_PC (program counter)

11

_PCE Reg_PC -> Bus (program counter)

12

_RaW Register -> Bus

13

_RaE Bus -> Register

14

_RbW Register -> Bus

15

_RbE Bus -> Register

16

_RcW Register -> Bus

17

_RcE Bus -> Register

18

_RdW Register -> Bus

19

_RdE Bus -> Register

20

_IRW Bus -> Reg_IR (instruction register)

21

_MAW Bus -> Reg_MAW (memory address register)

22

PGM Select program RAM bank

23

_HLT Halt

24

_MW Bus -> memory cell pointed at by Reg_MAR (also PGM)

25

_ME memory cell pointed at by Reg_MAR (also PGM) -> Bus

26

unused

27

unused

28

unused

29

unused

30

unused

31

_TR Controller Micro Timer reset to 0

The underscore prefix '_' indicates that the signal has negative polarity, that is zero when
asserted and 1 otherwise.

Page 19

5.5 INSTRUCTION LIST

Opcode Instruction

0x00 "NOP" ,

0x01 "MOV Ra, Rb" ,

0x02 "MOV Ra, Rc" ,

0x03 "MOV Ra, Rd" ,

0x04 "MOV Ra, SP" ,

0x05 "MOV Ra, PC" ,

0x06 "undefined" ,

0x07 "DATA Ra, #IMM"

0x08 "MOV Rb, Ra" ,

0x09 "MOV Rb, Rb" ,

0x0A "MOV Rb, Rc" ,

0x0B "MOV Rb, Rd" ,

0x0C "MOV Rb, SP" ,

0x0D "MOV Rb, PC" ,

0x0E "undefined" ,

0x0F "DATA Rb, #IMM"

0x10 "MOV Rc, Ra" ,

0x11 "MOV Rc, Rb" ,

0x12 "MOV Rc, Rc" ,

0x13 "MOV Rc, Rd" ,

0x14 "MOV Rc, SP" ,

0x15 "MOV Rc, PC" ,

0x16 "undefined" ,

0x17 "DATA Rc, #IMM"

0x18 "MOV Rd, Ra" ,

0x19 "MOV Rd, Rb" ,

0x1A "MOV Rd, Rc" ,

0x1B "MOV Rd, Rd" ,

0x1C "MOV Rd, SP" ,

0x1D "MOV Rd, PC" ,

0x1E "undefined" ,

0x1F "DATA Rd, #IMM"

0x20 "MOV SP, Ra" ,

0x21 "MOV SP, Rb" ,

0x22 "MOV SP, Rc" ,

0x23 "MOV SP, Rd" ,

0x24 "MOV SP, SP" ,

0x25 "MOV SP, PC" ,

0x26 "undefined" ,

0x27 "DATA SP, #IMM"

0x28 "JMP Ra" ,

0x29 "JMP Rb" ,

0x2A "JMP Rc" ,

0x2B "JMP Rd" ,

0x2C "JMP SP" ,

0x2D "HLT" ,

0x2E "undefined" ,

Page 20

0x2F "JMP #imm" ,

0x30 "undefined" ,

0x31 "undefined" ,

0x32 "undefined" ,

0x33 "undefined" ,

0x34 "undefined" ,

0x35 "undefined" ,

0x36 "undefined" ,

0x37 "undefined" ,

0x38 "JC #imm" ,

0x39 "JZ #imm" ,

0x3A "JN #imm" ,

0x3B "undefined" ,

0x3C "JO #imm" ,

0x3D "undefined" ,

0x3E "undefined" ,

0x3F "undefined" ,

0x40 "LOD Ra, [Ra]"

0x41 "LOD Ra, [Rb]"

0x42 "LOD Ra, [Rc]"

0x43 "LOD Ra, [Rd]"

0x44 "LOD Ra, [SP]"

0x45 "LOD Ra, [PC]"

0x46 "POP Ra" ,

0x47 "LOD Ra, [#imm]

0x48 "LOD Rb, [Ra]"

0x49 "LOD Rb, [Rb]"

0x4A "LOD Rb, [Rc]"

0x4B "LOD Rb, [Rd]"

0x4C "LOD Rb, [SP]"

0x4D "LOD Rb, [PC]"

0x4E "POP Rb" ,

0x4F "LOD Rb, [#imm]

0x50 "LOD Rc, [Ra]"

0x51 "LOD Rc, [Rb]"

0x52 "LOD Rc, [Rc]"

0x53 "LOD Rc, [Rd]"

0x54 "LOD Rc, [SP]"

0x55 "LOD Rc, [PC]"

0x56 "POP Rc" ,

0x57 "LOD Rc, [#imm]

0x58 "LOD Rd, [Ra]"

0x59 "LOD Rd, [Rb]"

0x5A "LOD Rd, [Rc]"

0x5B "LOD Rd, [Rd]"

0x5C "LOD Rd, [SP]"

0x5D "LOD Rd, [PC]"

0x5E "POP Rd" ,

0x5F "LOD Rd, [#imm]

0x60 "LOD SP, [Ra]"

0x61 "LOD SP, [Rb]"

0x62 "LOD SP, [Rc]"

0x63 "LOD SP, [Rd]"

0x64 "LOD SP, [SP]"

0x65 "LOD SP, [PC]"

0x66 "POP SP" ,

Page 21

0x67 "LOD SP, [#imm]

0x68 "LOD PC, [Ra]"

0x69 "LOD PC, [Rb]"

0x6A "LOD PC, [Rc]"

0x6B "LOD PC, [Rd]"

0x6C "LOD PC, [SP]"

0x6D "LOD PC, [PC]"

0x6E "RET" ,

0x6F "LOD PC, [#imm]

0x70 "undefined" ,

0x71 "undefined" ,

0x72 "undefined" ,

0x73 "undefined" ,

0x74 "undefined" ,

0x75 "undefined" ,

0x76 "undefined" ,

0x77 "undefined" ,

0x78 "undefined" ,

0x79 "undefined" ,

0x7A "undefined" ,

0x7B "undefined" ,

0x7C "undefined" ,

0x7D "undefined" ,

0x7E "undefined" ,

0x7F "undefined" ,

0x80 "STO [Ra], Ra"

0x81 "STO [Ra], Rb"

0x82 "STO [Ra], Rc"

0x83 "STO [Ra], Rd"

0x84 "STO [Ra], SP"

0x85 "STO [Ra], PC"

0x86 "undefined" ,

0x87 "undefined" ,

0x88 "STO [Rb], Ra"

0x89 "STO [Rb], Rb"

0x8A "STO [Rb], Rc"

0x8B "STO [Rb], Rd"

0x8C "STO [Rb], SP"

0x8D "STO [Rb], PC"

0x8E "undefined" ,

0x8F "undefined" ,

0x90 "STO [Rc], Ra"

0x91 "STO [Rc], Rb"

0x92 "STO [Rc], Rc"

0x93 "STO [Rc], Rd"

0x94 "STO [Rc], SP"

0x95 "STO [Rc], PC"

0x96 "undefined" ,

0x97 "undefined" ,

0x98 "STO [Rd], Ra"

0x99 "STO [Rd], Rb"

0x9A "STO [Rd], Rc"

0x9B "STO [Rd], Rd"

0x9C "STO [Rd], SP"

0x9D "STO [Rd], PC"

0x9E "undefined" ,

Page 22

0x9F "undefined" ,

0xA0 "STO [SP], Ra"

0xA1 "STO [SP], Rb"

0xA2 "STO [SP], Rc"

0xA3 "STO [SP], Rd"

0xA4 "STO [SP], SP"

0xA5 "STO [SP], PC"

0xA6 "undefined" ,

0xA7 "undefined" ,

0xA8 "STO [PC], Ra"

0xA9 "STO [PC], Rb"

0xAA "STO [PC], Rc"

0xAB "STO [PC], Rd"

0xAC "STO [PC], SP"

0xAD "STO [PC], PC"

0xAE "undefined" ,

0xAF "undefined" ,

0xB0 "PUSH Ra" ,

0xB1 "PUSH Rb" ,

0xB2 "PUSH Rc" ,

0xB3 "PUSH Rd" ,

0xB4 "PUSH SP" ,

0xB5 "CALL Rc" ,

0xB6 "undefined" ,

0xB7 "PUSH #imm" ,

0xB8 "STO [#imm], Ra

0xB9 "STO [#imm], Rb

0xBA "STO [#imm], Rc

0xBB "STO [#imm], Rd

0xBC "STO [#imm], SP

0xBD "STO [#imm], PC

0xBE "undefined" ,

0xBF "undefined" ,

0xC0 "INC Ra" ,

0xC1 "INC Rb" ,

0xC2 "INC Rc" ,

0xC3 "INC Rd" ,

0xC4 "undefined" ,

0xC5 "SUB Rb, Rb" ,

0xC6 "undefined" ,

0xC7 "undefined" ,

0xC8 "SUB Ra, Rb" ,

0xC9 "undefined" ,

0xCA "SUB Rc, Rb" ,

0xCB "SUB Rd, Rb" ,

0xCC "ADD Ra, Rb" ,

0xCD "ADD Rb, Rb" ,

0xCE "ADD Rc, Rb" ,

0xCF "ADD Rd, Rb" ,

0xD0 "XOR Ra, Rb" ,

0xD1 "XOR Rb, Rb" ,

0xD2 "XOR Rc, Rb" ,

0xD3 "XOR Rd, Rb" ,

0xD4 "OR Ra, Rb" ,

0xD5 "OR Rb, Rb" ,

0xD6 "OR Rc, Rb" ,

Page 23

0xD7 "OR Rd, Rb" ,

0xD8 "AND Ra, Rb" ,

0xD9 "AND Rb, Rb" ,

0xDA "AND Rc, Rb" ,

0xDB "AND Rd, Rb" ,

0xDC "NOT Ra" ,

0xDD "NOT Rb" ,

0xDE "NOT Rc" ,

0xDF "NOT Rd" ,

0xE0 "DEC Ra" ,

0xE1 "DEC Rb" ,

0xE2 "DEC Rc" ,

0xE3 "DEC Rd" ,

0xE4 "undefined" ,

0xE5 "SBC Rb, Rb" ,

0xE6 "undefined" ,

0xE7 "undefined" ,

0xE8 "SBC Ra, Rb" ,

0xE9 "undefined" ,

0xEA "SBC Rc, Rb" ,

0xEB "SBC Rd, Rb" ,

0xEC "ADC Ra, Rb" ,

0xED "ADC Rb, Rb" ,

0xEE "ADC Rc, Rb" ,

0xEF "ADC Rd, Rb" ,

0xF0 "undefined" ,

0xF1 "undefined" ,

0xF2 "undefined" ,

0xF3 "undefined" ,

0xF4 "CMP Rb, Ra" ,

0xF5 "CMP Rb, Rb" ,

0xF6 "CMP Rb, Rc" ,

0xF7 "CMP Rb, Rd" ,

0xF8 "CMP Ra, Rb" ,

0xF9 "undefined" ,

0xFA "CMP Rc, Rb" ,

0xFB "CMP Rd, Rb" ,

0xFC "TST Ra" ,

0xFD "TST Rb" ,

0xFE "TST Rc" ,

0xFF "TST Rd" ,

Page 24

5.6 SAMPLE PROGRAM POWERS
This is one of the pre-built sample programs the object code of which can be selected and run from

the console.

; Ver 12.02.2023 power3_v03.s

; Show all power series (n^1, n^2, n^3, ...) up to base 15. Limited to 255

;

;

; core logic:

; n^E = n^(E-1) * n = n^(E-1) + n^(E-1) + n^(E-1) [repeated n times]

; where n is the base and E is the exponent.

; That is, previous displayed power added to itself base-1 times

; gives new displayed power

; Increment exponent until result too big then start with next base.

; Increment base and repeat until > 15.

;

 .org 0

start: data Rd, #1

 sto [#0], Rd ; ram[#0] base = 1

;

newBase: lod Rd, [#0] ; base

 inc Rd ; base++

 sto [#0], Rd ; base

 data Rb, #15

 and Rd,Rb ; test if base outside range 1 to 15 (0x0F)

 jz #start ; base > 15 goto start

 lod Ra, [#0] ; RegA always holds last calculated power for

 ; current base. initial value = base

;

newExp: mov Rc, Ra ; last calculated power for current base to accum

 mov Rb, Ra ; RegB is addend

 lod Rd, [#0] ; multiplier (initial value as base - 1)

 dec Rd ; multiplier--

;

innerAdd: add Rc, Rb ; add old power to self then base-1 more times

 jc #newBase ; too big so start with next base

 dec Rd ; multiplier--

 jz #showPower ; multiplier == zero. We have a new power to show

 jmp #innerAdd ; keep adding base to accum

;

showPower: mov Ra, Rc ; loading to RegA shows it on display

 jmp #newExp ; next exponent with current base.

